Приведенная система вычетов по модулю. Определение и свойства вычетов

ОСНОВНЫЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

6. 1. Определение 1.

Классом чисел по данному модулю т называется множество всех тех и только тех целых чисел, которые при делении на т имеют один и тот же остаток r, то есть сравнимых по модулю т (т ÎN, т > 1).

Обозначение класса чисел, имеющих остаток r : .

Каждое число из класса называется вычетом по модулю т, а сам класс называется классом вычетов по модулю т.

6. 2. Свойства множества классов вычетов по модулю т :

1) всего по модулю т будет т классоввычетов: Z т = { , , , … , };

2) каждый класс содержит бесконечное множество целых чисел (вычетов) вида: = {a = mq + r / q ÎZ, r < m }

3) "а Î : а º r (mod m );

4) "а, b Î : а º b (mod m ), то есть любые два вычета, взятые из одного класса, сравнимы по модулю т ;

5) "а Î , "b Î : а b (mod m ), то есть никакие два вычета; взятые из разных классов, несравнимы по модулю т .

6. 3. Определение 3.

Полной системой вычетов по данному модулю т называется любой набор т чисел, взятых по одному и только по одному из каждого класса вычетов по модулю т.

Пример: если m = 5, то {10, 6, – 3, 28, 44} – это полная система вычетов по модулю 5 (причём, не единственная!)

В частности,

множество {0, 1, 2, 3, … , m –1} – это система наименьших неотрицательных вычетов;

множество {1, 2, 3, … , m –1, т }– это система наименьших положительных вычетов.

6. 4. Отметим, что:

если {х 1 , х 2 , … , х т } – полная система вычетов по модулю т , то

.

6. 5. Теорема 1.

Если {х 1 , х 2 , … , х т } – полная система вычетов по модулю т , "а, b Î Z и (а, т ) = 1, – то система чисел {ах 1 + b , ах 2 + b , … , ах т + b }также образует полную систему вычетов по модулю т .

6. 6. Теорема 2.

Все вычеты одного и того же класса вычетов по модулю т имеют с числом т один и тот же наибольший общий делитель: "а, b Î Þ (а; т ) = (b; т ).

6. 7. Определение 4.

Класс вычетов по данному модулю т называется взаимно простым с модулем т , если хотя бы один вычет этого класса – взаимно простой с т.

Заметим, что в этом случае по теореме 2 все числа этого класса будут взаимно простыми с модулем т.

6. 8. Определение 5.

Приведённой системой вычетов по данному модулю т называется система вычетов, взятых по одному и только по одному из каждого класса, взаимно простого с модулем т.

6. 9. Отметим, что:

1) приведённая система вычетов по модулю т содержит j(т ) чисел {х 1 , х 2 ,…, };

2) : .

3) " х i : (х i , m ) = 1;

Пример : Пусть по модулю т = 10 имеется 10классоввычетов:

Z 10 = { , , , , , , , , , }– множество классоввычетов по модулю 10. Полная система вычетов по mod 10 будет, например, такая: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.



Множество классов вычетов, взаимно простых с модулем m= 10: { , , , }(j(10) = 4).

Приведённая система вычетов по модулю10 будет, например,

{1, 3, 7, 9}, или {11, 43, – 5, 17}, или { – 9, 13, – 5, 77} и т.д. (везде j(10) = 4 числа).

6.10. Практически: чтобы составить одну из возможных приведённых систем вычетов по mod m , нужно из полной системы вычетов по mod m выбрать те вычеты, которые взаимно простые с т. Таких чисел будет j(т ).

6.11. Теорема 3.

Если {х 1 , х 2 ,…, } – приведённая система вычетов по модулю т и

(а , m ) = 1, – то система чисел {ах 1 , ах 2 , … , ах j (т) } также образует

приведённую систему вычетов по модулю т .

6.12. Определение 6.

Суммой ( Å ) классов вычетов и + b, равных сумме любых двух вычетов, взятых по одному из каждого данного класса и : Å = , где "а Î , "b Î .

6.13. Определение 7.

Произведением ( Ä ) классов вычетов и по модулю т называется класс вычетов , то есть класс вычетов, состоящий из чисел а ´ b, равных произведению любых двух вычетов, взятых по одному из каждого данного класса и : Ä = , где "а Î , "b Î .

Таким образом, в множестве классов вычетов по модулю т : Z т = { , , ,…, } определены две алгебраические операции – "сложения" и "умножения".

6.14. Теорема 4.

Множество классов вычетов Z т по модулю т является ассоциативно-коммутативным кольцом с единицей:

< Z т , +, · > = < { , , ,…, }, +, · > – кольцо.

ТИПОВЫЕ ЗАДАЧИ

1. Составить по модулю т = 9:

1) полную систему наименьших положительных вычетов;

2) полную систему наименьших неотрицательных вычетов;

3) произвольную полную систему вычетов;

4) полную систему наименьших по абсолютной величине вычетов.

Ответ :1) {1, 2, 3, 4, 5, 6, 7, 8, 9}; 2) {0, 1, 2, 3, 4, 5, 6, 7, 8};

2. Составить приведённую систему вычетов по модулю т = 12.

Решение.

1) Составим полную систему наименьших положительных вычетов по модулю т = 12:



{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} (всего т = 12 чисел).

2) Вычеркнем из этой системы числа, не взаимно простые с числом 12:

{1, 2 , 3 , 4 , 5, 6 , 7, 8 , 9 , 10 , 11, 12 }.

3) Оставшиеся числа, взаимно простые с числом 12, образуют искомую приведённую систему вычетов по модулю т = 12 (всего j(т ) = j(12) = 4 числа).

Ответ: {1, 5, 7, 11} – приведённая система вычетов по модулю т = 12.

130. Составьте 1) полную систему наименьших положительных вычетов; 2) полную систему наименьших неотрицательных вычетов; 3) произвольную систему вычетов; 4) полную систему наименьших по абсолютной величине вычетов; 5) приведённую систему вычетов: а) по модулю m = 6; б) по модулю m = 8.

131. Является ли множество {9, 2, 16, 20, 27, 39, 46, 85} полной системой вычетов по модулю 8 ?

132 По какому модулю множество{20, – 4, 22, 18, – 1}является полной системой вычетов?

133. Составьте приведённую систему вычетов по модулю m , если а) m = 9; б) m = 24; в) m = 7. Сколько чисел должна содержать такая система?

134. Сформулируйте основные свойства полной системы вычетов и приведённой системы вычетов по модулю m .

135. Какими элементами отличаются приведённая и полная системы наименьших неотрицательных вычетов по простому модулю?

136. При каком условии числа а и – а принадлежат одному классу вычетов по модулю m ?

137. Каким классам вычетов по модулю 8 принадлежат все простые числа р ³ 3 ?

138. Образует ли множество чисел {0, 2 0 , 2 1 , 2 2 , ... , 2 9 } полную систему вычетов по модулю 11 ?

139. Скольким классам вычетов по модулю 21 принадлежат все вычеты из одного класса вычетов по модулю 7 ?

140. Множество целых чисел Z распределите по классам вычетов по модулю 5. Составьте таблицы сложения и умножения в образовавшемся множестве классов вычетов Z 5 . Является ли множество Z 5: а) группой с операцией сложения классов? б) группой с операцией умножения классов?

§ 7. ТЕОРЕМА ЭЙЛЕРА. МАЛАЯ ТЕОРЕМА ФЕРМА

ОСНОВНЫЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

7. 1. Теорема 1.

Если а ÎZ , т ÎN, т >1 и (а ; т ) = 1 , – то в бесконечной последовательности степеней а 1 , а 2 , а 3 , ... , а s , … , а t , … найдутся хотя бы две степени с показателями s и t (s < t ) такие, что . (*)

7. 2. Замечание . Обозначив t s = k > 0, из (*) получим: . Возводя обе части этого сравнения в степень n ÎN , получим: (**). Это означает, что существует бесконечное множество степеней числа a , удовлетворяющих сравнению (**). Но как найти эти показатели? Каков наименьший показатель, удовлетворяющий сравнению (**) ? На первый вопрос отвечает теорема Эйлера (1707 – 1783).

7. 3. Теорема Эйлера.

Если а ÎZ , т ÎN, т >1 и (а ; т ) = 1, – то . (13)

Пример. Пусть а = 2, т = 21, (а ; т ) = (2; 21) = 1. Тогда . Так как j (21) = 12, то 2 12 º 1(mod 21). В самом деле: 2 12 = 4096 и (4096 – 1) 21. Тогда очевидно, что 2 24 º 1(mod 21), 2 36 º 1(mod 21) и так далее. Но является ли показатель степени 12 – наименьшим , удовлетворяющим сравнению 2 n º 1(mod 21) ? Оказывается, нет. Наименьшим показателем будет п = 6: 2 6 º 1(mod 21), ибо 2 6 – 1 = 63, а 63 21. Заметим, что наименьший показатель следует искать только среди делителей числа j(т ) (в данном примере – среди делителей числа j(21) = 12).

7. 4. Малая теорема Ферма (1601 – 1665).

Для любого простого числа р и любого числа а ÎZ , не делящегося на р , имеет место сравнение . (14)

Пример. Пусть а = 3, р = 5, где 3 не 5. Тогда или .

7. 5. Обобщёння теорема Ферма.

Для любого простого числа р и произвольного числа а ÎZ имеет место сравнение (15)

ТИПОВЫЕ ЗАДАЧИ

1. Докажите, что 38 73 º 3(mod 35).

Решение.

1) Так как (38; 35) = 1, то по теореме Эйлера ; j(35) = 24, значит,

(1).

2) Из сравнения (1) по следствию 2 свойства 5 0 числовых сравнений имеем:

3) Из сравнения (2) по следствию 1 свойства 5 0 сравнений: 38 72 ×38 º 1×38 (mod 35) Þ Þ38 73 º38 º 38–35 = 3(mod 35) Þ 38 73 º 3 (mod 35), что и требовалось доказать.

2. Дано: а = 4, т = 15. Найти наименьший показатель степени k , удовлетворяющий сравнению (*)

Решение.

1) Так как (a ; m ) = (4; 25) = 1, то по теореме Эйлера , j(25) = 20, поэтому .

2) Является ли найденный показатель степени – число 20 – наименьшим натуральным числом, удовлетворяющим сравнению (*)? Если существует показатель степени, меньший 20, то он должен быть делителем числа 20. Значит, искомый наименьший показатель k надо искать среди множества чисел n = {1, 2, 4, 5, 10, 20}– делителей числа 20.

3) При п = 1: ;

при п = 2: ;

при п = 3: (рассматривать не надо);

при п = 4: ;

при п = 5: ;

при п = 6, 7, 8, 9: (рассматривать не надо);

при п = 10: .

Итак, наименьшим показателем степени k , удовлетворяющим сравнению(*), является k = 10.

Ответ: .

УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

141. По теореме Эйлера . При а = 3, т = 6 имеем: .

Так как j(6) = 2, то 3 2 º1(mod 6), или 9º1(mod 6), Тогда, по лемме, (9 – 1) 6 или 8 6 (нацело!?). Где ошибка?

142. Докажите, что: а) 23 100 º1(mod 101); б) 81 40 º 1(mod100); в) 2 73 º 2 (mod 73).

143. Докажите, что а) 1 16 + 3 16 + 7 16 + 9 16 º 4 (mod 10);

б) 5 4п + 1 + 7 4п + 1 делится без остатка на 12..

144. Докажите теорему, обратную теореме Эйлера: если а j ( m ) º 1(mod m ), то (а, m ) =1.

145. Найдите наименьший показатель степени k ÎN, удовлетворяющий данному сравнению: а) ; б) ; в) ; г) ;

д) ; е) ; ж) ; з) .

и) ; к) ; л) ; м) .

146. Найдите остаток от деления:

а) 7 100 на 11; б) 9 900 на 5; в) 5 176 на 7; г) 2 1999 на 5; д) 8 377 на 5;

е) 26 57 на 35; ж) 35 359 на 22; з) 5 718 на 103; и) 27 260 на 40; к) 25 1998 на 62.

147*. Докажите, что а 561 º а (mod 11).

148*. Если каноническое разложение натурального числа п не содержит множителей 2 и 5, то 12-я степень этого числа оканчивается цифрой 1. Докажите.

149*. Докажите, что 2 64 º 16 (mod 360).

150*. Докажите: если (а, 65) =1 , (b, 65) =1, то a 12 – b 12 делится без остатка на 65.

Глава 3. АРИФМЕТИЧЕСКИЕ ПРИЛОЖЕНИЯ

ТЕОРИИ ЧИСЛОВЫХ СРАВНЕНИЙ

§ 8. СИСТЕМАТИЧЕСКИЕ ЧИСЛА

ОСНОВНЫЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

1. ЦЕЛЫЕ СИСТЕМАТИЧЕСКИЕ ЧИСЛА

8. 1. Определение 1.

Системой счисления называется всякий способ записи чисел. Знаки, с помощью которых записывают эти числа, называют цифрами.

8. 2. Определение 2.

Целым неотрицательным систематическим числом, записанным в t -ичной позиционной системе счисления, называется число n вида

, где a i (i = 0,1, 2,…, k ) – целые неотрицательные числа – цифры , причём 0 £ a i £ t – 1, t – основание системы счисления, t ÎN, t > 1.

Например, запись числа в 7-ричной системе имеет вид: (5603) 7 = 5 ×7 3 + 6×7 2 + 0×7 1 + 3. Здесь a i – это 5, 6, 0, 3 – цифры; все они удовлетворяют условию: 0 £ a i £ 6. При t =10 говорят: число n записано в десятичной системе счисления, причём индекс t= 10не пишут.

8. 3. Теорема 1.

Всякое целое неотрицательное число может быть представлено, причём единственным образом, в виде систематического числа по любому основанию t, где t Î N, t > 1.

Пример: (1 3 9) 10 = (3 5 1) 6 = (1 0 2 4) 5 = …

8. 4. Отметим, что:

1) приписывание к систематическому числу нулей слева не изменяет этого числа:

(3 4) 5 = (0 3 4) 5 .

2) приписывание к систематическому числу s нулей справа равносильно умножению этого числа на t s : (3 4) 5 = 3×5 1 + 4; (3 4 0 0) 5 = 3×5 3 + 4×5 2 + 0×5 1 + 0 = 5 2 ×(3×5 1 + 4).

8. 5. Алгоритм перевода числа, записанного в t -ичной системе, в десятичную:

Пример: (287) 12 = 2×12 2 + 8×12 1 +7×12 0 = 2×144 + 8×12 + 7 = 288 + 96 +7 = (391) 10 .

8. 6. Алгоритм перевода числа, записанного в десятичной системе, в t -ичную:

Пример: (3 9 1) 10 = (х ) 12 . Найти х.

8. 7. Действия над систематическими числами

2. СИСТЕМАТИЧЕСКИЕ ДРОБИ

8. 8. Определение 3.

Конечной t-ичной систематической дробью в системе счисления с основанием t называется число вида

где c 0 ÎZ , с i – цифры целые неотрицательные числа , причём 0 £ с i £ t – 1, t Î N, t > 1, k Î N .

Обозначение: a = (c 0 , с 1 с 2 …с k ) t . При t = 10 дробь называется десятичной .

8. 9. Следствие 1.

Всякая конечная систематическая дробь есть рациональное число, которое можно представить в виде , где а Î Z, b Î N.

Пример. a = (3 1, 2 4) 6 = 3×6 + 1 + =19 + – рациональное число. Обратное утверждение, вообще говоря, неверно. Например, дробь нельзя преобразовать в конечную систематическую (десятичную) дробь.

8.10. Определение 4.

Бесконечной t-ичной положительной систематической дробью в системе счисления с основанием t называется число вида

, где с 0 Î N , с i (i =1, 2, …, к , …) – цифры целые неотрицательные числа , причём 0 £ с i £ t –1, t ÎN, t > 1, k ÎN .

Обозначение: a = (с 0 , с 1 с 2 … с k …) t . При t =10 дробь называется десятичной .

8.11. Определение 5.

Возможны три вида бесконечных систематических дробей:

I a = (с 0 , ) t = = t , где = = = … В этом случае число a называется бесконечной чисто периодической дробью, (с 1 с 2 … с k ) – периодом , k– количество цифр в периоде – длиной периода.

II a = .

В этом случае число a называется бесконечной смешанной периодической дробью, предпериодом , () – периодом , k – количество цифр в периоде – длиной периода, l – количество цифр между целой частью и первым периодом – длиной предпериода.

III a = (с 0 , с 1 с 2 … с k …) t . В этом случае число a называется бесконечной непериодической дробью.

ТИПОВЫЕ ЗАДАЧИ

1. Число (а ) 5 = (2 1 4 3) 5 , заданное в 5–ричной системе, перевести в 7-ричную систему, то есть найти х , если (2 1 4 3) 5 = (х ) 7 .

Решение.

1) Преобразуем данное число (2 1 4 3) 5 в число (у ) 10 , записанное в десятичной системе:

2. Выполните действия:

1) (7) 8 + (5) 8 ; 2) (7) 8 × (5) 8 ; 3) (3 6 4 2) 6 + (4 3 5 1) 6 ;

4) (5 2 3 4) 7 – (2 3 5 1) 7 ; 5) (4 2 3) 5 × (3 2) 5 ; 6) (3 0 1 4 1) 5: (4 2 3) 5 .

Решение.

1) (7) 8 + (5) 8 = (7) 10 + (5) 10 = (12) 10 = 1×8 + 4 = (1 4) 8 ;

2) (7) 8 × (5) 8 = (7) 10 × (5) 10 = (35) 10 = 4×8 + 3 = (4 3) 8 ;

3) (3 6 4 2) 6 + (4 3 5 1) 6 (1 2 4 3 3) 6 Примечание: 4+5 = 9 = 1×6+3, 3 пишем, 1 переходит в следующий разряд, 6+3+1=10 =1×6+4, 4 пишем, 1 переходит в следующий разряд, 3+4+1= 8 = 1×6+2, 2 пишем, 1 переходит в следующий разряд.
4) (5 2 3 4) 7 – (2 3 5 1) 7 (2 5 5 3) 7 Примечание: "занимаем" единицу высшего разряда, т. е. "1" = 1×7: (3 + 1×7) – 5 = 10 – 5 = 5, (1 + 1×7) – 3 = 8 – 3 = 5,
5) (4 2 3) 5 ´ (3 2) 5 (1 4 0 1) 5 + (2 3 2 4) 5__ (3 0 1 4 1) 5 Примечание: При умножении на 2: 3 ×2 = 6 = 1×5 + 1, 1 пишем, 1 переходит в следующий разряд, 2 ×2 +1=5 = 1×5 +0, 0 пишем, 1 переходит в следующий разряд, 2 ×4 +1=9 = 1×5 +4, 4 пишем, 1 переходит в следующий разряд, При умножении на 3: 3 ×3 = 9 = 1×5 + 4, 4 пишем, 1 переходит в следующий разряд, 3 ×2 +1=7 = 1×5 +2, 2 пишем, 1 переходит в следующий разряд, 3 ×4 +1=13=2×5 +3, 3 пишем, 2 переходит в следующий разряд.

6) (3 0 1 4 1) 5 | (4 2 3) 5

2 3 2 4 (3 2) 5

1 4 0 1 Ответ: 1) (1 4) 8 ; 2) (4 3) 8 ; 3) (1 2 4 3 3) 6 ; 4) (2 5 5 3) 7 ;

(0) 5 5) (3 0 1 4 1) 5 ; 6) (3 2) 5 .

УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

151. Числа, заданные в t -ичной системе, переведите в десятичную систему:

а) (2 3 5) 7 ; б) (2 4 3 1) 5 ; в) (1 0 0 1 0 1) 2 ; г) (1 3 ) 15 ;

д) (2 7) 11 ; е) (3 2 5 4) 6 ; ж) (1 5 0 1 3) 8 ; з) (1 1 0 1 1 0 0 1) 2 ;

и) (7 6 2) 8 ; к) (1 1 1 1) 20 .

152. Числа. заданные в десятичной системе, переведите в t -ичную систему. Сделайте проверку.

а) (1 3 2) 10 = (х ) 7 ; б) (2 9 8) 10 = (х ) 5 ; в) (3 7) 10 = (х ) 2 ; г) (3 2 4 5) 10 = (х ) 6 ;

д) (4 4 4 4) 10 = (х ) 3 ; е) (5 6 3) 10 = (х ) 12 ; ж) (5 0 0) 10 = (х ) 8 ; з) (6 0 0) 10 = (х ) 2 ;

и)(1 0 0 1 5) 10 =(х ) 20 ; к) (9 2 5) 10 = (х ) 8 ; л) (6 3 3) 10 = (х ) 15 ; м) (1 4 3) 10 = (х ) 2 .

153. Числа, заданные в t -ичной системе, переведите в q -ичную систему (путём перехода через десятичную систему).

а) (3 7) 8 = (х ) 3 ; б) (1 1 0 1 1 0) 2 = (х ) 5 ; в) ( 6 2) 11 = (х ) 4 ;

г) (4 ) 12 = (х ) 9 . д) (3 3 1 3 1) 5 = (х ) 12 .

154. а) Как изменится число (1 2 3) 5 , если к нему справа приписать нуль?

б) Как изменится число (5 7 6) 8 , если к нему справа приписать два нуля?

155. Выполните действия:

а) (3 0 2 1) 4 + (1 2 3 3) 4 ; б) (2 6 5 4) 8 + (7 5 4 3) 8 ; в) (1 0 1 1 0 1) 2 +(1 1 0 1 10) 2 ;

г) (5 2 4 7) 9 + (1 3 7 6) 9 ; д) (4 7 6) 9 – (2 8 7) 9 ; е) (2 4 5 3) 7 – (1 6 4 5) 7 ;

ж) (8 3) 12 – (5 7 9) 12 ; з) (1 7 5) 11 – ( 6) 11 ; и) (3 6 4 0 1) 7 – (2 6 6 6 3) 7 ;

к) (1 0 0 1 0) 2 × (1 1 0 1) 2 ; л) (7 4 1) 8 × (2 6) 8 ; м) (5 3 7 2) 8 × (2 4 6) 8 ;

н) (3 3 2 1) 4 × (2 3 0) 4 ; о) (1 0 2 2 2 2) 3: (1 2 2) 3 ; п) (2 1 0 3 2) 4: (3 2 3) 4 ;

р) (2 6 1 7 4) 8: (5 4 6) 8 ; с) (4 3 2 0 1) 5: (2 1 4) 5 ; т)(1 1 0 1 0 0 1 0) 2:(1 0 1 0 1) 2

у) (1 1 0 1 1 0) 2: (1 1 1) 2 ; ф) (1 1 1 0) 6: (2 1 5) 6 ; х)(3 2 3 8 2 2 1 7 0) 9:(7 6 4 2) 9 .

ц) (1 6 3 5) 8 + (7 6 4) 8 ; ч) (1 1 1 1) 3 – (2 1 2) 3 ; ш)(1 2 7) 12 +(9 1 3 5 ) 12b" × b 1 Тогда:

I Если знаменатель b = b" (содержит только "2" и / или "5"), – то дробь преобразуется в конечную десятичную дробь. Количество десятичных знаков равно наименьшему натуральному числу l l º 0(mod b ").

II Если знаменатель b = b 1 (не содержит "2" и "5"), – то дробь преобразуется в бесконечную чисто периодическую равна наименьшему натуральному числу k , удовлетворяющему сравнению 10 k º 1(mod b 1).

III Если знаменатель b = b" × b 1 (содержит "2" и / или"5", а также иные простые множители), – то дробь преобразуется в бесконечную смешанную периодическую деся-

тичную дробь.

Длина периода равна наименьшему натуральному числу k , удовлетворяющему сравнению 10 k º 1(mod b 1 ).

Длина предпериода равна наименьшему натуральному числу l , удовлетворяющему сравнению 10 l º 0(mod b ").

9. 2. Выводы.

9. 3. Отметим, что:

рациональным числом является всякая конечная десятичная дробь или бесконечная периодическая десятичная дробь;

иррациональным числом является всякая бесконечная непериодическая десятичная дробь.

ТИПОВЫЕ ЗАДАЧИ

1. Данные обыкновенные дроби, записанные в десятичной системе, преобразовать в

десятичные, предварительно определив вид искомой дроби (конечная или бесконечная; периодическая или непериодическая; если – периодическая, то чисто периодическая или смешанная периодическая); в последних случаях – предварительно найти число k – длину периода и число l – длину предпериода. 1) ; 2) ; 3) .

Решение.

1) У дроби = знаменатель – число b = 80 = 2 4 × 5 содержит только "2" и "5". Поэтому данная дробь преобразуется в конечную десятичную дробь. Количество десятичных знаков l наим определяется из условия: 10 l º0(mod80):

2) У дроби = знаменатель – число b = 27 = 3 3 не содержит "2" и "5". Поэтому данная дробь преобразуется в бесконечную чисто периодическую десятичную дробь. Длина периода k наим определяется из условия: 10 k º1(mod27):

3) У дроби = знаменатель – число b = 24 = 2 3 ×3, то есть имеет вид: b = b" × b 1 (кроме "2" или "5" содержит и иные множители, в данном случае число 3). Поэтому данная дробь преобразуется в бесконечную смешанную периодическую десятичную дробь. Длина периода k наим определяется из условия: 10 k º1(mod3), откуда k наим = 1, то есть длина периода k = 1. Длина предпериода l наим определяется из условия: 10 l º0(mod8), откуда l наим = 3, то есть длина предпериода l = 3.

Проверка: разделим "уголком" 5 на 24 и получим: = 0, 208 (3).

Ответ: 1) 0, 0375; 2) 0, (074); 3) 0, 208 (3).

УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

156. Данные обыкновенные дроби, записанные в десятичной системе, преобразуйте в десятичные дроби. Если десятичная дробь - периодическая, то предварительно найдите число k - длину периода и число l - длину предпериода.

157. Данные обыкновенные дроби, записанные в десятичной системе, преобразуйте в t -ичные систематические дроби. Найдите числа k - длину периода и l - длину предпериода.

158*. В какой системе счисления число (4 6) 10 записывается теми же цифрами, но в

обратном порядке?

159*. Что больше: единица 8-го разряда в двоичной системе или единица 4-го разряда в 8-ричной системе?

§ 10. ТЕОРЕМА ПАСКАЛЯ. ПРИЗНАКИ ДЕЛИМОСТИ

ОСНОВНЫЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

10. 1. Теорема Паскаля (1623 – 1662).

Даны натуральные числа: т > 1 и n, записанное в t - ичной системе:

, где a i – – цифры: a i ÎN, 0 £ a i £ t –1 (i = 0,1, 2,…, k ), t ÎN, t > 1.

Пусть n = (a k a k – 1 … a 1 a 0) 10 = a k ×10 k +a k – 1 ×10 k – 1 +…+a 1 ×10 + a 0 , m =3 и m = 9.

1) Найдём b i : по модулю m = 3по модулю m = 9

10 0 º1(mod3), т.е. b 0 =1, 10 0 º1(mod9), т.е. b 0 =1,

10 1 º1(mod3), т.е. b 1 =1, 10 1 º1(mod9), т.е. b 1 =1,

10 2 º1(mod3), т.е. b 2 =1, 10 2 º1(mod9), т.е. b

дипломная работа

2.5.2 Вычеты. Полная и приведенная системы вычетов

Числа равноостаточные, или, что то же самое, сравнимые по модулю m, образуют класс чисел по модулю m.

Из такого определения следует, что всем числам класса отвечает один и тот же остаток r, и мы получим все числа класса, если в форме mq + r заставим q пробегать все целые числа.

Соответственно m различным значениям r имеем m классов чисел по модулю m.

Любое число класса называется вычетом по модулю m по отношению ко всем числам того же класса. Вычет, получаемый при q = 0, равный самому остатку r, называется наименьшим неотрицательным вычетом.

Взяв от каждого класса по одному вычету, получим полную систему вычетов по модулю m. Чаще всего в качестве полной системы вычетов употребляют наименьшие неотрицательные вычеты 0, 1, ..., m-1 или также абсолютно наименьшие вычеты. Последние, как это следует из вышеизложенного, в случае нечетного m представляются рядом

1, 0, 1, ...,

а в случае чётного m каким-либо из двух рядов

1, 0, 1, ...,

1, 0, 1, ..., .

Любые m чисел, попарно несравнимые по модулю m, образуют полную систему вычетов по этому модулю.

Действительно, будучи несравнимы, эти числа тем самым принадлежат к различным классам, а так как их m, т.е. столько же, сколько и классов, то в каждый класс наверно попадёт по одному числу.

Если (a, m) = 1 и x пробегает полную систему вычетов по модулю m, то ax + b, где b - любое целое, тоже пробегает полную систему вычетов по модулю m.

Действительно, чисел ax +b будет столько же, сколько и чисел x, т.е. m. Согласно предыдущему утверждению остаётся, следовательно, только показать, что любые два числа ax 1 + b и ax 2 + b, отвечающие несравнимым x 1 и x 2 , будут сами несравнимы по модулю m.

Но допустив, что ax 1 + b ax 2 + b (mod m), мы придём к сравнению ax 1 = ax 2 (mod m), откуда, вследствие (a, m) = 1, получим

x 1 x 2 (mod m),

что противоречит предположению о несравнимости чисел x 1 и x 2 .

Числа одного и того же класса по модулю m имеют с модулем один и тот же общий наибольший делитель. Особенно важны классы, для которых этот делитель равен единице, т.е. классы, содержащие числа, взаимно простые с модулем.

Взяв от каждого такого класса по одному вычету, получим приведённую систему вычетов по модулю m. Приведённую систему вычетов, следовательно, можно составить из чисел полной системы, взаимно простых с модулем. Обыкновенно приведённую систему вычетов выделяют из системы наименьших неотрицательных вычетов: 0, 1, ..., m-1. Так как среди этих чисел число взаимно простых с m есть (m), то число чисел приведённой системы, равно как и число классов, содержащих числа, взаимно простые с модулем, есть (m).

Пример. Приведённая система вычетов по модулю 42 будет 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41.

Любые (m) чисел, попарно несравнимые по модулю m и взаимно простые с модулем, образуют приведённую систему вычетов по модулю m.

Действительно, будучи несравнимыми и взаимно простыми с модулем, эти числа тем самым принадлежат к различным классам, содержащим числа, взаимно простые с модулем, а так как их (m), т.е. столько же, сколько и классов указанного вида, то в каждый класс наверно попадёт по одному числу.

Если (a, m) = 1 и x пробегает приведённую систему вычетов по модулю m, то ax тоже пробегает приведённую систему вычетов по модулю m.

Действительно, чисел ax будет столько же, сколько и чисел x, т.е. (m). Согласно предыдущему свойству остаётся, следовательно, только показать, что числа ax по модулю m несравнимы и взаимно просты с модулем. Первое следует из свойства сравнений (если сравнение имеет место по модулю m, то оно имеет место и по модулю d, равному любому делителю числа m) для чисел более общего вида ax + b, второе же следует из (a, m) = 1, (x, m) = 1.

Алгебраическая проблема собственных значений для матриц специального вида и ее программное обеспечение

При постановке проблемы собственных значений для матриц, элементы которых заданы приближенно, естественно возникает вопрос об устойчивости полученного решения, иными словами, вопрос о том...

База данных MS Access

Программное обеспечение для работы с базами данных используется на персональных компьютерах уже довольно давно. К сожалению, эти программы либо были элементарными диспетчерами хранения данных и не имели средств разработки приложений...

Дефрагментатор файловой системы

Метод полной дефрагментации или дефрагментации свободного места использовался одним из первых. Данный способ дефрагментирует все файлы и помещает их в начала раздела, что позволяет освободить максимально возможную свободную область диска...

Компьютерное моделирование устройств робототехники

В данной курсовой работе необходимо изучить моделирование устройств робототехники следующими методами: 1. С использованием системы MathCAD -- исследовать поведение одного звена робота...

Методы и средства защиты компьютерной информации

Зашифрование по алгоритму Rijndael реализуется в виде следующего псевдокода. Аргументы обрабатываются как указатели на поля байтов или четырехбайтовых слов. Интерпретация полей, переменных и функций дана в таблицах 11-13...

Описание реализации базовой модели электрической цепи

В данной курсовой работе необходимо выполнить: 1. С использованием системы MathCAD рассчитать значения функции заряда на конденсаторе в заданной электрической схеме. Построить графики функции емкости конденсатора и функции заряда. 2...

Приложения Windows: графический редактор Paint

Двойным щелчком на ячейке палитры можно выбрать для неё цвет из полной палитры цветов...

Применение систем компьютерного моделирования для исследования математической модели RLC-цепи

Применение системы Mathcad и Matlab для исследования математической модели электрической, включающей в себя источник ЭДС, сопротивления R, емкость С и катушку индуктивности L. Полная постановка задачи: 1. С использванием системы Mathcad 1...

Применение системы MathCAD для исследования модели электрической цепи с переменной индуктивностью

Применение системы MathCAD для исследования модели электрической цепи с переменной индуктивностью, заданной графически. Постановка задачи: 1...

Применение системы MathCAD для исследования реакции электрической цепи на внешнее воздействие

Применение системы Mathcad для исследования реакции электрической цепи на внешнее воздействие Постановка задачи 1. С использованием системы Mathcad рассчитать значения функции реакции u(t) на воздействие e(t). Построить графики функций u(t) и e(t). 2...

Программа для решения системы обыкновенных дифференциальных уравнений

Разработка алгоритма и Паскаль-программы по вычислению заданной функции

Запишем полную Паскаль-программу в соответствии с разработанным алгоритмом, который приведён в Приложении A. Program n_33; var m, n, j: integer; b, an, mult, h: real; x: array of real; y: array of real; c: array of real; gd,gm,n,m,i,j:integer; s,b,srk,min,max,y1:real; Begin clrscr; writeln (vvedite kol-vo chlenov c,x); readln (n...

Синтез алгоритмов согласованного управления пространственным движением беспилотным летательным аппаратом

Известно, что одним из основных моментов в составлении или разработке математической модели ЛА является принятие различных допущений, упрощающих, схематизирующих реальный процесс. Принятие допущений это инженерная задача, от правильности...

Управление проектом внедрения автоматизированной информационной системы для ООО "Рим"

АСУП как система состоит из большого количества элементов различных уровней и различного назначения. К ним относятся подсистемы, модули, блоки управления, задачи, управленческие процедуры, функции, операции и т. п. Базовые системы типа ERP...

Полная система вычетов. Приведённая система вычетов. Наиболее употребительные системы вычетов: наименьшая положительная, наименьшая неотрицательная, абсолютно наименьшая и т.д.

Теорема 1 . Свойства полной и приведённой система вычетов.

1°.Критерий полной системы вычетов. Любая совокупность из m целых чисел, попарно не сравнимых по модулю m , образует полную систему вычетов по модулю m .

2°. Если числа x 1 , x 2 , ..., x m – полная система вычетов по модулю m , (a , m ) = 1, b – произвольное целое число, то числа ax 1 +b , ax 2 +b , ..., ax m +b также составляют полную систему вычетов по модулю m .

3°. Критерий Приведённой системы вычетов. Любая совокупность, состоящая из j(m ) целых чисел, попарно не сравнимых по модулю m и взаимно простых с модулем, образует приведённую систему вычетов по модулю m .

4°. Если числа x 1 , x 2 , ..., x j ( m ) – приведённая система вычетов по модулю m , (a , m ) = 1, то числа ax 1 , ax 2 , ..., a x j ( m ) также составляют приведённую систему вычетов по модулю m .

Теорема 2. Теорема Эйлера.

Если числа a и m взаимно простые, то a j ( m ) º 1(mod m ).

Cледствие .

1°. Теорема Ферма. Если p – простое число и a не делится на p , то a p –1 º 1(mod p ).

2°. Обобщенная теорема Ферма. Если p – простое число, то a p º a (mod p ) для любых a ÎZ .

§ 4. Решение сравнений с переменной

Решение сравнений. Равносильность. Степень сравнения.

Теорема . Свойства решений сравнений.

1°.Решениями сравнений являются целые классы вычетов.

2°. ("k )(a k º b k (mod m ))Ùk = Þ сравнения º 0 (mod m ) и º 0 (mod m ) равносильны.

3°. Если обе части сравнения умножить на число, взаимно простое с модулем, то получится сравнение, равносильное исходному.

4°. Всякое сравнение по простому модулю p равносильно сравнению, степень которого не превосходит p –1.

5°. Сравнение º 0 (mod p ), где p – простое число, имеет не более n различных решений.

6°. Теорема Вильсона. (n –1)! º –1 (mod n ) Û n простое число.

§ 5. Решение сравнений первой степени

ax º b (mod m ).

Теорема . 1°. Если (a , m ) = 1, то сравнение имеет решение, причем единственное.



2°. Если (a , m ) = d и b не делится на d , то сравнение не имеет решений.

3°. Если (a , m ) = d и b делится на d , то сравнение имеет d различных решений, которые составляют один класс вычетов по модулю .

Способы решения сравнений ax º b (mod m ) в случае, когда (a , m ) = 1:

1) подбор (перебор элементов полной системы вычетов);

2) использование теоремы Эйлера;

3) использование алгоритма Евклида;

4) вариация коэффициентов (использование свойства 2° полной системы вычетов из Теоремы 2.2);

§ 6. Неопределенные уравнения первой степени

ax +by = c .

Теорема . Уравнение ax +by = c разрешимо тогда и только тогда, когда c (a , b ).

В случае (a , b ) = 1 все решения уравнения задаются формулами

t ÎZ , где x 0 является каким-либо решением сравнения

ax º c (mod b ), y 0 = .

Диофантовы уравнения.

ГЛАВА 10. Комплексные числа

Определение системы комплексных чисел. Существование системы комплексных чисел

Определение системы комплексных чисел.

Теорема . Система комплексных чисел существует.

Модель: R 2 с операциями

(a , b )+(c , d ) = (a +c , b +d ), (a , b )×(c , d ) = (ac bd , bc +ad ),

i = (0, 1) и отождествлением а = (а , 0).

Алгебраическая форма комплексного числа

Представление комплексного числа в виде z = a +bi , где a , b ÎR , i 2 = –1. Единственность такого представления. Re z , Im z .

Правила выполнения арифметических действий над комплексными числами в алгебраической форме.

Арифметическое n -мерное векторное пространство C n . Системы линейных уравнений, матрицы и определители над C .

Извлечение квадратных корней из комплексных чисел в алгебраической форме.

Согласно свойству сравнений №15, числа одного и того же класса по модулю m имеют с модулем m один и тот же НОД. Особенно важны классы, для которых он равен 1.

Взяв от каждого из таких классов по одному числу, получим приведенную систему вычетов по модулю m . Обычно ее выделяют из системы наименьших неотрицательных вычетов по модулю m .

Приведенная система наименьших неотрицательных вычетов по модулю m обозначается U m .

Количество чисел в приведенной системе вычетов по модулю m , очевидно, равно φ(m ).

Пример :

Приведенная система вычетов по модулю 15 есть {1; 2; 4; 7; 8; 11; 13; 14}. Заметим, что φ(15)=(5–1)∙(3–1)= 8 и действительно, в приведенной системе вычетов по модулю 15 ровно 8 элементов.

Утверждение 1

Любые φ(m ) чисел, попарно несравнимых по модулю m и взаимно простых с m , образуют приведенную систему вычетов.

(Доказательство очевидно как в утверждении 1 пункт 2)

Утверждение 2

Если (a , m ) = 1, x пробегает приведенную систему вычетов по модулю m , то ax тоже пробегает приведенную систему вычетов по модулю m . (Доказательство очевидно как в утверждении 2 пункт 2).

Обратный элемент.

Говорят, что элемент b называется обратным к a по модулю m , если a∙b ≡1(mod m ), и пишут b a –1 (mod m ).

Вообще, классическая теория чисел не нуждается в таком понятии как обратный элемент, в чем можно убедиться, ознакомившись, например, с . Однако криптология использует системы вычетов как в теоретико-числовом, так и в алгебраическом аспекте, а потому, для удобства изложения алгебраических основ криптологии, мы вводим понятие обратного элемента.

Возникает вопрос – для всех ли элементов по данному модулю m существует обратный (по умножению), и если для каких-то элементов обратный существует, как его найти?

Для ответа на этот вопрос воспользуемся расширенным алгоритмом Евклида. Рассмотрим сначала взаимно простые число a и модуль m . Тогда, очевидно, (a ,m )=1. Расширенный алгоритм Евклида позволяет получить числа x и y , такие, что ax+my= (a ,m ), или, что то же самое, ax+my =1. Из последнего выражения получаем сравнение ax+my ≡1(mod m ). Поскольку my ≡0(mod m ), то ax ≡1(mod m ), а значит полученное с помощью расширенного алгоритма Евклида число x как раз и есть искомый обратный элемент к числу a по модулю m .



Пример.

a =5, m =7. Требуется найти a -1 mod m .

Воспользуемся расширенным алгоритмом Евклида.

Обратный ход:

1=5–2∙2=5–(7–5∙1)∙2=5∙3–7∙2.

x =3, y =–2.

5 -1 ≡3(mod 7)

Проверка: 5∙3=15. 15≡1(mod 7).

Действительно, 3 является обратным элементом к 5 по модулю 7.

Итак, конструктивным образом убедились в том, что для чисел, взаимно простых с модулем, существует обратный по этому модулю. А существуют ли обратные элементы для чисел, не являющихся с модулем взаимно простыми?

Пусть (a ,m )=d ≠1. Тогда a и m представимы в виде a =d a 1 , m =d m 1 . Допустим, что для a существует обратный элемент по модулю m, то есть b : a b ≡1(modm ). Тогда a b= m k +1. Или, что то же самое, d a 1 ∙b= d m 1 ∙k +1. Но тогда по теореме 2 из §1 п.1, в силу того, что и левая часть данного уравнения, и первое слагаемое в правой части делятся на d , то d \1, а это не так, поскольку d ≠1. Пришли к противоречию, следовательно предположение о существовании обратного элемента неверно.

Итак, мы только что доказали

Теорему обратимости

a -1 (mod m ) (a , m ) = 1.

Суммируя все рассуждения этого пункта, можем сказать, что обратимыми являются только взаимно простые с модулем числа, и найти обратные для них можно с помощью расширенного алгоритма Евклида.

Классы вычетов. Системы вычетов

Краткие сведения из теории

Применяя теорему о делении с остатком можно множество целых чисел разбить на ряд классов. Рассмотрим пример. Пусть m = 6. Тогда имеем шесть классов разбиения множества целых чисел по модулю 6:

r = 1;

r = 2;

r = 3;

r = 4;

r = 5;

где через r обозначен остаток от деления целого числа на 6.

Напомним теорему о делении с остатком:

Теорема : Разделить число на число , , с остатком, значит, найти пару целых чисел q и r , таких, что выполняются следующие условия: .

Легко доказывается, что для любых целых чисел а и деление с остатком возможно и числа q и r определяются однозначно. В нашем примере полная система наименьших неотрицательных вычетов есть множество {0, 1, 2, 3, 4, 5}; полная система наименьших положительных вычетов – множество {0, 1, 2, 3, 4, 5}; полная система наименьших по абсолютной величине вычетов – множество {-2,-1, 0, 1, 2, 3}; приведённая система вычетов – множество {1,5}, так как ; фактор-множество

Один из методов выполнения арифметических операций над данными целыми числами основан на простых положениях теории чисел. Идея этого метода состоит в том, что целые числа представляются в одной из непозиционных систем – в системе остаточных классов. А именно: вместо операций над целыми числами оперируют с остатками от деления этих чисел на заранее выбранные простые числа – модули .

Чаще всего числа выбирают из множества простых чисел.

Пусть …, .

Так как в кольце целых чисел имеет место теорема о делении с остатком, т. е. где , то кольцо Z , по определению, является евклидовым.

Таким образом, в качестве чисел можно выбрать остатки от деления числа А на р i соответственно.

Система вычетов позволяет осуществлять арифметические операции над конечным набором чисел, не выходя за его пределы. Полная система вычетов по модулю n ― любой набор из n попарно несравнимых по модулю n целых чисел. Обычно в качестве полной системы вычетов по модулю n берутся наименьшие неотрицательные вычеты

Делении целых чисел a и m получается частное q и остаток r , такие что

a = m q + r, 0 r m-1. Остаток r называют ВЫЧЕТ ом по модулю m .

Например, для m = 3 и для m =5 получим:

a = m q + r, m = 3 a = m q + r, m = 5
0 = 3 + 0 0 = 5 + 0
1 = 3 + 1 1 = 5 + 1
2 = 3 + 2 2 = 5 + 2
3 = 3 + 0 3 = 5 + 3
4 = 3 + 1 4 = 5 + 4
5 = 3 + 2 5 = 5 + 0
6 = 3 + 0 6 = 5 + 1
7 = 3 + 1 7 = 5 + 2

Если остаток равен нулю (r =0 ), то говорят, что m делит a нацело (или m кратно a ), что обозначают m a , а числа q и m называют делителями a . Очевидно 1 a и a a . Если a не имеет других делителей, кроме 1 и а , то а – простое число, иначе а называют составным числом. Самый большой положительный делитель d двух чисел a и m называют наибольшим общим делителем (НОД) и обозначают d = (a,m). Если НОД (a,m)= 1 , то a и m не имеют общих делителей, кроме 1 , и называются взаимно простыми относительно друг друга.



Каждому ВЫЧЕТ у r = 0, 1, 2,…, m-1 соответствует множество целых чисел a, b, … Говорят, что числа с одинаковым ВЫЧЕТ ом сравнимы по модулю и обозначают a b(mod m) или (a b) m .

Например, при m = 3 :

Например, при m = 5 :



Числа а , которые сравнимы по модулю m , образуют класс своего ВЫЧЕТа r и определяются как a = m q + r.

Числа а тоже называют ВЫЧЕТами по модулю m . НеотрицательныеВЫЧЕТы а = r (при q=0 ), принимающие значения из интервала , образуют полную систему наименьших вычетов по модулю m.

ВЫЧЕТы а , принимающие значения из интервала [-( ,…,( ] , при нечетном m или из интервала [- при четном m образуют полную систему абсолютно наименьших ВЫЧЕТ ов по модулю m.

Например, при m = 5 классы наименьших вычетов образуют

r = 0, 1, 2, 3, 4, a = -2, -1, 0, 1, 2. Обе приведенные совокупности чисел образуют полные системы вычет ов по модулю 5 .

Класс ВЫЧЕТов , элементы которого взаимно просты с модулем m

называют приведенным. Функция Эйлера определяет сколько ВЫЧЕТов из полной системы наименьших вычетов по модулю m взаимно просты с m . При простом m=p имеем = p-1.

Определение . Максимальный набор попарно несравнимых по модулю m чисел, взаимно простых с m , называется приведённой системой вычетов по модулю m . Всякая приведённая система вычетов по модулю m содержит элементов, где - функция Эйлера.

Определение. Любое число из класса эквивалентности є m будем называть вычет ом по модулю m . Совокупность вычет ов, взятых по одному из каждого класса эквивалентности є m , называется полной системой вычет ов по модулю m (в полной системе вычет ов, таким образом, всего m штук чисел). Непосредственно сами остатки при делении на m называются наименьшими неотрицательными вычет ами и, конечно, образуют полную систему вычет ов по модулю m . Вычет r называется абсолютно наименьшим, если ïrï наименьший среди модулей вычет ов данного класса.

Пример . Проверить, образуют ли числа 13, 8, - 3, 10, 35, 60 полную систему вычетов по модулю m=6.

Решение : По определению числа образуют полную систему вычетов по модулю m , если их ровно m и они попарно несравнимы по модулюm .

Попарную несравнимость можно проверить, заменив каждое число наименьшим неотрицательным вычетом; если повторений не будет, то это полная система вычетов.

Применим теорему о делении с остатком: a = m q + r.

13 = 6 2 + 1 13 1(mod 6); 8 = 6 1 + 2 8 2(mod 6);

3 = 6 (-1) + 3 -3 3(mod 6); 10 = 6 1 + 4 10 4(mod 6);

35 = 6 5 + 5 35 5(mod 6); 60 = 6 10 + 0 60 0(mod 6).

Получили последовательность чисел: 1, 2, 3, 4, 5, 0, их ровно 6, повторений нет и они попарно несравнимы. То есть, они образуют полную систему вычетов по модулю m = 6.

Пример . Заменить наименьшим по абсолютной величине, а также наименьшим положительным вычетом 185 по модулю 16.

Решение. Применим теорему о делении с остатком:

185 = 16 11 + 9 185 9(mod 16).

Пример. Проверить, образуют ли числа (13, -13, 29, -9) приведенную систему вычетов по модулю m=10.

Решение: Всякая приведённая система вычетов по модулю m содержит элементов, где - функция Эйлера. В нашем случае =4, ибо среди натуральных чисел только 1, 3, 7, 9 взаимно просты с 10 и не превосходят его. То есть, возможно, что эти четыре числа составляют искомую систему. Проверим эти числа на их попарную несравнимость: =4, ибо среди натуральных чисел только 1, 3, 7, 9 взаимно просты с 10 и не превосходят его. То есть, возможно, что эти четыре числа составляют искомую систему. Проверим эти числа на их попарную несравнимость:m .

Вариант 1. a = 185, m = 12; Вариант 2. a = 84, m = 9;

Вариант 3. a = 180, m = 10; Вариант 4. a = 82, m = 9;

Вариант 5. a = 85, m = 11; Вариант 6. a = 84, m = 8;

Вариант 7. a = 103, m = 87; Вариант 8. a = 84, m = 16;

Вариант 9. a = 15, m = 10; Вариант 10. a = 81, m = 9;

Вариант 11. a = 85, m = 15; Вариант 12. a = 74, m = 13;

Вариант 13. a = 185, m = 16; Вариант 14. a = 14, m = 9;

Вариант 15. a = 100, m = 11; Вариант 16. a = 484, m = 15;

Вариант 17. a = 153, m = 61; Вариант 18. a = 217, m = 19;

Вариант 19. a = 625, m = 25; Вариант 20. a = 624, m = 25;

Задание 3. Записать полную и приведенную систему наименьших

gastroguru © 2017